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Abstract. We investigate the competition between magnetic order and local Kondo effect in a Kondo lattice
model (i.e. the Coqblin-Schrieffer Hamiltonian extended to a lattice) in a mean-field approximation, taking
account of the spin-orbit degeneracy Ns.o. of each localized f level. This leads to the definition of a Ns.o.

dependent Kondo temperature. We study the Kondo phase and compare its energy with the energies of
magnetic phases, when the number of the conduction band electron per site is near one. We present a phase
diagram which shows the occurrence of three phases: Kondo, antiferromagnetic and paramagnetic phases.
Our model in the mean-field approximation also shows a somewhat flat Kondo temperature, for large values
of Ns.o., as a function of the exchange coupling J between conduction and localized f electrons. Finally
we show some scaling effects between Ns.o. and J and we define a corresponding Kondo temperature.

PACS. 75.20.-g Diamagnetism and paramagnetism – 75.30.-m Intrinsic properties of magnetically ordered
materials – 71.28.+d Narrow-band systems; intermediate-valence solids

1 Introduction

Strong electron-electron correlations are one of the central
issues of the current condensed matter physics. The so-
called heavy fermion materials represent a typical example
of systems in which strong correlation effects are essential
in determining their physical properties. The Kondo lat-
tice model (KLM) [1] or periodic Anderson model (see for
example [2] and Refs. therein) has attracted much inter-
est as one of the typical standard models of heavy fermion
systems. But the theoretical description of KLM remains
an unsolved problem of solid state physics.

The KLM describes the interaction, at each lattice site,
between conduction electrons and a localized f electron.
In this model, conduction electrons are spin polarized due
to their exchange interaction with the f electrons. This
spin polarization propagates from one lattice site to an-
other one. Since f electrons are present at each lattice
site, two of these sites are related by the indirect exchange
interaction between f electrons. This interaction is the so-
called Ruderman-Kittel- Kasuya-Yosida (RKKY) interac-
tion. So, there is a competition between local Kondo effect
and magnetic order.

On the other hand, in weakly hybridized Kondo
compounds, there are three types of compounds at low
temperatures: nonmagnetic, antiferromagnetic and fer-
romagnetic ones. The nonmagnetic compounds, such as
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CeAl3, CeCu2Si2 [3–5] are characterized by a heavy
fermion behavior. The effects of the magnetic Ce ions are
compensated by the conduction electrons, which leads to a
Fermi liquid behavior at low temperature. Enormous val-
ues of the static magnetic susceptibility and the electronic
specific heat coefficient are found as well as a T 2 behavior
for the magnetic resistivity at very low temperatures. The
other compounds such as CeAl2 [6,7] and CeAg, CeGe2

[8,9] have antiferromagnetic order or ferromagnetic order
respectively.

In order to explain these anomalous behaviors, sev-
eral authors studied the present problem of the compe-
tition between local Kondo effect and magnetic order.
Doniach [10] introduced, many years ago, the KLM and
applied the mean-field theory to this model. He described
the competition between Kondo effect and RKKY inter-
actions by a presently well known “Doniach diagram”. He
found that the ground state is antiferromagnetic for low
|J |/D and it is a nonmagnetic Kondo singlet for large
|J |/D (where J is the exchange parameter between 4f
and conduction electrons and D is the half width of the
conduction band). Lacroix and Cyrot [11] used the Func-
tional Integral method with a static approximation for
the non-degenerate f orbital case. Coleman [12] used the
Scaling theory for the degenerate f case of the total an-
gular momentum. Recently, Iglesias et al. [13] reexamined
the Doniach diagram by including explicit short-range an-
tiferromagnetic interactions in the Kondo lattice for the
nondegenerate case and found a rather flat Kondo tem-
perature, as observed in several cerium compounds.
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In this work, we treat the problem for the degenerate f
case of the total angular momentum and use a mean field
approximation as well as order parameters both for the
local Kondo effect and the magnetic orders. For exam-
ple, at a cerium site, the large spin-orbit coupling leads
to a ground state of total angular momentum I = l − 1

2
with l = 3. In this paper we disregard further splitting
due to crystal field. In Section 2, we describe the KLM by
adding the spin-orbit degeneracy of the localized f level
and by using a mean-field approximation, but without
explicitly including nearest-neighbor magnetic exchange
interactions as was done in reference [13]. In Section 3,
we study some ground state properties of the Kondo
phase, in particular the Kondo binding energy and the
Kondo lattice temperature T1 at which the Kondo or-
der parameter vanishes. In Section 4, we determine the
ferromagnetic (antiferromagnetic) binding energy and the
temperature TF (TAF) at which the magnetic order pa-
rameter of the ferromagnetic (antiferromagnetic) phase
vanishes. Finally, in Section 5, some consequences are cal-
culated on the phase boundaries between the energetically
favoured phases, i.e. the Kondo, antiferromagnetic and
possible paramagnetic phases.

2 The Hamiltonian

We start with the Kondo lattice Hamiltonian [11,12] (i.e.
the Coqblin-Schrieffer [14] Hamiltonian extended to a lat-
tice), taking the spin-orbit degeneracy Ns.o. of each local
level into account:

H = H0 +HI, (2.1)

H0 =
∑
k,σ

εkc
†
kσckσ + E0

∑
n,M

f†nMfnM , (2.2)

HI =− J
N

∑
n,k,k′

ei(k−k′)·Rn

{∑
Mσ

γσM(k)γ∗σM (k′)νnMc
†
kσck′σ

+
∑

(M,σ)6=(M′σ′)

γσM (k)γ∗σ′M′(k
′)f†nM′fnMc

†
kσck′σ′

 ,

(2.3)

with

νnM = f†nMfnM −
1

Ns.o.

∑
M′

f†nM′fnM′ , (2.4)

γσM (k) =
l∑

m=−l
〈lm1

2
σ|IM〉Y ml (k), (2.5)

where c†kσ creates a band electron with momentum k and
spin component σ, f†nM creates an f electron in a to-
tal angular momentum state |IM〉 at site n, 〈. . . | . . . 〉 is
a Clebsch-Gordon coefficient, Y ml labels a spherical har-
monic of rank l, J is the s-f exchange constant which is

negative here, N designates the number of lattice sites.
Equation (2.3) is an exchange-type Hamiltonian taking
into account combined spin and orbital exchange scatter-
ing.

The quantity E0 and the chemical potential µ must
satisfy [11]

1
N

∑
kσ

〈c†kσckσ〉 = nc, (2.6)

1
N

∑
nM

〈f†nMfnM〉 = 1, (2.7)

where 〈A〉 is a thermal average of A; nc is the band elec-
tron number par site, which is assumed to be close to
one. For example, in Ce intermetallic compounds (like
CeRu2Ge2) about 10% of the 5d states are occupied, as
it is more generally the case for many rare earth com-
pounds. Thus the trivalent Ce ground state configuration
is 4f15d1.

We approximate equation (2.3) in the following way:

HI =
J

N

∑
nkk′

ei(k−k′)·Rn

 ∑
(Mσ)6=(M′σ′)

γσM (k)γ∗σ′M′(k
′)

×
(
〈f†nM′ck′σ′〉c

†
kσfnM + 〈c†kσfnM〉f

†
nMck′σ′

−〈c†kσfnM〉〈f
†
nM′ck′σ′〉

)
−
∑
Mσ

γσM (k)γ∗σM (k′)

×
(
〈νnM 〉c†kσck′σ+ 〈c†kσck′σ〉νnM−〈c

†
kσck′σ〉〈νnM 〉

)}
.

(2.8)

Then, at site n, the quantity

wn =
J√
N

∑
kMσ

eik·RnγσM (k)〈c†kσfnM〉 (2.9)

is assumed to play the role of a Kondo effect order param-
eter, the quantities

vn =
1
N

∑
kk′σ

ei(k−k′)·Rnσ〈c†kσck′σ〉 (2.10)

and 〈νnM 〉 to play the role of magnetic order parameters.

3 The Kondo phase

For that phase, both magnetic order parameters vanish,
since we recover a non-magnetic (singlet) regime.

vn = 0 (3.1)
〈νnM 〉 = 0. (3.2)

Therefore, equation (2.8) gives

HI =
J

N

∑
nkk′

ei(k−k′)·Rn

∑
(Mσ)6=(M′σ′)

γσM (k)γ∗σ′M′(k
′)

×
{
〈f†nM′ck′σ′〉c

†
kσfnM+〈c†kσfnM 〉f

†
nM′ck′σ′

−〈c†kσfnM〉〈f
†
nM′ck′σ′〉

}
. (3.3)
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Equation (3.3) is an effective hybridization Hamiltonian
term giving high density of states near the Fermi energy
[11,15–17] which is observed in Kondo lattice systems [18].
In the following, we assumed Ns.o. to be large, therefore
the restricted summation, in equation (3.3), on MσM ′σ′

can be approximately replaced by unrestricted one, and
one obtains:

HI =
1√
N
w
∑
nkMσ

(
eik·RnγσM (k)c†kσfnM

+e−ik·Rnγ∗σM (k)f†nM ckσ
)
−N w2

J
(3.4)

where w is given in equation (2.9) and is a constant for
each site n.

Let us examine first the situation at absolute zero tem-
perature. Minimization of the internal energy functional
with respect to w or Green’s function technique gives the
Kondo effect order parameter:

w = DeD/Ns.o.J
(

1− e2D/Ns.o.J
)−1

(3.5)

where a rectangular band density of states with D as half
bandwidth has been used. The Kondo binding energy is
then:

∆ξK
D

= Ne2D/Ns.o.J
(

1− e2D/Ns.o.J
)−1

(3.6)

This result is similar to that of Lacroix and Cyrot [11]
who took the non-degenerate orbital case and used the
Functional Integral method with a static approximation.

Now, let us look for the temperature T1 at which the
Kondo order parameter w vanishes. Green’s function tech-
nique gives a B.C.S. type of equation for T1 (similar to the
equation giving the superconducting critical temperature)
and one obtains:

1 =
Ns.o.J

2D

{
log
[

N2
s.o.

2(Ns.o. − 1)
T1

D

]
+

1
Ns.o.

log
[

Ns.o.

2(Ns.o. − 1)
T1

D

]}
. (3.7)

which can be exactly resolved and gives :

T1

D
=

2(Ns.o. − 1)

N
2Ns.o.+1
Ns.o.+1

s.o.

exp
{

2D
(Ns.o. + 1)J

}
. (3.8)

But when Ns.o. is supposed to be large, one has:

T1

D
=

2
Ns.o.

e2D/Ns.o.J (3.9)

and we recover the usual Kondo temperature, except the
introduction of Ns.o., instead of a coefficient of 2 in the
historical “s•S” model (non-degenerate case). Actually,
there are Ns.o. channels for changing the quantum number
M at site n and these channels add independently to each
other.

4 The magnetically ordered phase

For this phase, one has

wn = 0 (4.1)

therefore, equation (2.8) gives

HI = − J
N

∑
nkk′Mσ

ei(k−k′)·RnγσM (k)γ∗σM (k′)

×
(
〈νnM 〉c†kσck′σ+〈c†kσck′σ〉νnM−〈c

†
kσck′σ〉〈νnM 〉

)
.

(4.2)

4.1 The ferromagnetic case

For this case, all the lattice sites are equivalent, they have
the same value of the f -magnetic moment. At the abso-
lute zero, the f -magnetic moment has its maximum value,
and the use of equations (2.1, 2.2, 2.8, 4.2) gives for the
ferromagnetic binding energy:

∆ξF
D

=
N

8

(
J

D

)2

· (4.3)

Now, let us look for the temperature TF at which the
ferromagnetic order parameter vanishes. Green’s function
technique gives two differing results corresponding to both
spin-orbit components:

TF

D
=


1
12

(Ns.o.−1)2

Ns.o.(Ns.o.−1)

(
J
D

)2
for I = l − 1

2

1
12
Ns.o.+1
Ns.o.

(
J
D

)2
for I = l + 1

2 ,

(4.4)

For large Ns.o. one has, whatever the spin-orbit compo-
nent:

TF

D
=

1
12

(
J

D

)2

. (4.5)

4.2 The antiferromagnetic case

For this case the lattice is divide in two sublattices A
and B, and the f -magnetic moment of a site belonging
to sublattice A is directly opposite to that belonging to
sublattice B; then one has an extra-periodicity. At the ab-
solute zero, the absolute value of the f -magnetic moment
of each lattice site has its maximum value, and the use of
equations (2.1, 2.2, 2.8, 4.2) gives the antiferromagnetic
binding energy for Ns.o. large:

∆ξAF

D
= N

{
1
8

(
J

D

)2

log

(
2D +

√
4D2 + J2

−J

)

+
1
2

√
1 +

(
J

2D

)2

− 1
2

 . (4.6)
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Table 1. Numerical values of exchange coupling J0/D (in the large Ns.o. limit), JT/D and corresponding temperatures as well
as binding energies.

Ns.o. J0/D ∆ξK/D = ∆ξAF/D JT/D TT/D = TAF/D

2(no degenaracy) −1.6× 10−1 1.0× 10−2

6(I = 5/2) −5.2× 10−2 1.6 × 10−3 −5.5× 10−2 1.6× 10−3

8(I = 7/2) −3.5× 10−2 0.8 × 10−3 −4.0× 10−2 1.0× 10−3

14(limit) −1.7× 10−2 0.2 × 10−3 −2.0× 10−2 2.8× 10−4

Now, let us look for the temperature TAF at which the
antiferromagnetic order parameters vanish. Minimization
of the Free energy functional leads, for large Ns.o., to the
following equation in TAF

TAF

D
=

1
12

(
J

D

)2

log
(
D

TAF

)
· (4.7)

5 On the phase boundaries

From equations (4.3-4.7), one sees that as far as a magnet-
ically ordered phase is concerned, the antiferromagnetic
case (because of the logarithmic factor) is more favoured
than the ferromagnetic one, since here nc is near one.
This is somewhat related with the fact that the heavy-
fermion behavior is much more often observed in anti- or
nearly anti-ferromagnetic systems than in ferromagnetic
ones. Also, the competition is now between the antiferro-
magnetic order and the local Kondo effect.

First, at the absolute zero, let us look for the value J0

of the exchange constant J such that the system is in the
Kondo phase for |J | greater than |J0| and in the antiferro-
magnetic phase for |J | less than |J0 |. J0 is the solution of
the equation obtained by setting the Kondo binding en-
ergy ∆ξK (Eq. (3.6)) equal to the antiferromagnetic bind-
ing energy ∆ξAF (Eq. (4.6)):

e2D/Ns.o.J0

(
1− e2D/Ns.o.J0

)−1

=
1
8

(
J0

D

)2

× log

(
2D +

√
4D2 + J2

0

−J0

)
+

1
2

√
1 +

(
J0

2D

)2

− 1
2
·

(5.1)

Of course, by solving equation (5.1), we obtain the exact
value of J0, but only in the large Ns.o. limit because equa-
tion (4.6) is also deduced in that limit. Now, let us look
for the value JT of the exchange constant J such that the
Kondo order parameter and the magnetic order param-
eters vanish together (paramagnetic phase limit). JT is
then the solution of the equation obtained by setting TT

from equation (3.9) equal to TAF from equation (4.7)

2(Ns.o. − 1)

N
2Ns.o.+1
Ns.o.+1

s.o.

exp
{

2D
(Ns.o. + 1)J

}
=
TAF (JT)

D
(5.2)

where TAF can be computed from equation (4.7). In fact,
the point of coordinates JT and TT = TAF (JT) is a kind

0 1
0

0.2

0.4

T1 /D

|J|/D

Ns.o. = 2

N

N

N

s.o.

s.o.

s.o.

= 14

= 8

=6

Fig. 1. Kondo temperature |T1|/D as a function of |J | /D for
the spin-orbit degeneracy Ns.o. = 2 (solid), 6 (dot), 8 (short
dash) and 14 (dash) cases. Each Kondo temperature is taken
from equation (3.8).

of triple point in the (J, T ) diagram, because it belongs to
the three phases (Kondo phase, antiferromagnetic phase,
paramagnetic phase).

From equations (5.1, 5.2), one can guess that |JT | is

greater than | J0|, because of the 2(Ns.o. − 1)/N
2Ns.o.+1
Ns.o.+1

s.o.

factor in the left hand side of equation (5.2). Therefore,
for the value of the exchange constant J between J0 and
JT, the system crosses three phases (Kondo, Antiferro-
magnetic, Paramagnetic) if one increases the temperature
(see Tab. 1).

Figure 1 shows plots of Kondo temperature T1/D
(Eq. (3.8)) as a function of |J |/D for values Ns.o. = 2
(no degenaracy), 6, 8 and 14 (large limit of Ns.o.). T1 de-
creases with decreasing Ns.o. for small |J |/D (< 0.2), but
for large |J |/D values such as |J |/D ' 1, T1 decreases
with increasing Ns.o.. Also for large |J |/D values, a rather
flat behaviour is obtained for T1 but only for large Ns.o.

(degeneracy effect). It is interesting to give (Fig. 2) a mag-
nified view of the various values of T1 (Fig. 1) when |J |/D
is restricted to |J | /D ≤ 0.2. We also plot TAF to show the
limit between Kondo, Antiferromagnetic (AF) and Para-
magnetic phases: Larger degeneracies Ns.o. decreases the
AF area along the |J | /D axis to the benefit of the Kondo
area. Actually, Figure 3 shows a scaling effect which was
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Kondo

Kondo
Kondo

Kondo

Para Para

ParaPara

AF AF

AF
AF

s.o. =2 Ns.o. =6

Ns.o. =8 Ns.o. =14

N

0.01

0.01

0

0
0 00.1 0.1 |J|/D

T/D

Fig. 2. Ground state phase diagram for Ns.o. = 2, 6, 8 and
14 for small values of | J | /D. The full line taken from equa-
tion (4.7) and the dotted line from equation (4.5) do not de-
pend upon Ns.o.. The dashed-dotted line from equation (3.8)
is compared to the pale dashed-dotted line from asymptotic
equation (3.9); equation (3.9) is a good approximation of
equation (3.8) for 2 < Ns.o. ≤ 14.

already mentioned by Kotani et al. [19] within the im-
purity Anderson model characterized by an hybridization
V . More precisely core-level photoemission spectra [19]
were shown to depend on the orbital degeneracy Ns.o.

of the 4f state but their essential features appeared un-
changed if Ns.o.V

2 was kept constant. In our case also
(Fig. 3), the scaled Kondo temperature is almost the same
if Ns.o.|J | /D is kept constant: in this way we can define:
TK = Ns.o.T1/D for the scaled Kondo temperature (see
also Eq. (3.9) for the asymptotic limit).

6 Concluding remarks

Within a mean field approximation the Kondo lattice sys-
tem has been studied using the Coqblin-Schrieffer Hamil-
tonian extended to a lattice and including the degeneracy
Ns.o. of the total angular momentum I of the f states. This
leads to a definition of a Kondo temperature depending on
Ns.o.. The competition between magnetic order and local
Kondo effect has been described when the band electron
number per site nc ∼ 1.0 and for large values of Ns.o.. Our
study gives some trends of the phase diagram and shows
possibility of three phases (antiferromagnetic, Kondo or
paramagnetic ones) depending on the values of the effec-
tive constant J and the temperature T . Also we point out
important scaling effects between Ns.o. and J and we de-
fine a new Kondo temperature almost independent ofNs.o.

if Ns.o. |J |/D is kept constant.

0 1
0

0.2

0.4

0.6

0.8

T1

|J|

Ns.o. = 2

N

N

N

s.o.

s.o.

s.o.

= 14

= 8

=6

N s.o.

D

N s.o.

D

Fig. 3. The orbital degeneracy Ns.o. dependence of the scaled
Kondo temperature TK = Ns.o.T1/D where T1/D is given by
equation (3.8). The scaled Kondo temperature TK depends on
the orbital degeneracy Ns.o., but its essential feature is almost
unchanged if Ns.o. | J |/D is kept constant, especially in the
large Ns.o. limit.

Finally, to test our results we suggest experimental
studies on pressure effect on an antiferromagnetic Kondo
lattice at low temperature (CeAl2 for instance), since the
parameters |J |/D increases with pressure. Then the ques-
tion is if we can see, beyond a critical value of pressure, the
system crossing and entering the Kondo phase. Of course
a similar pressure effect might be obtained through alloy-
ing, for example, replacing partially the Al of CeAl2 by
another appropriate element. Similarly for the CeRu2Si2
system, Ce can be replaced either by La or Y element [20].
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